使用 MolAICal 进行分子对接

作者: Qifeng Bai (update 2021-12-14)

更多教程(含英文教程)请见如下: MolAICal 官方主页: https://molaical.github.io MolAICal 官方主页中国镜像: https://molaical.gitee.io MolAICal 中文博客: https://molaical.gitee.io/cntutorial.html

1. 简介

SARS-CoV-2 导致 2019 年冠状病毒病(COVID-19)在世界范围内迅速传播。在本教程中,选择在冠状病毒复制中起重要作用的 SARS-CoV-2 主蛋白酶(Mpro)作为示例目标。已经报道了 SARS-CoV-2Mpro 的晶体结构包括 PDB ID: 6LU7, 6Y2F 等^{[1][2]}。在本教程中,基于 MolAICal (https://doi.org/10.1093/bib/bbaa161)介绍了蛋白质和配体之间的分子对接。在 3130 复合物的实验结合亲和力的测试中,Autodock Vina 的 Pearson 和 Spearman 相关系数(rp/rs)为 0.5259 和 0.5421,对于 MolAICal,在与 Autodock Vina 相同测定条件下,rp/rs 分别为 0.5335 和 0.5489。这表明 MolAICal 比 Autodock Vina 具有较好的"对接"和"排名"能力。

2. 材料

2.1 软件需求1) MolAICal: <u>https://molaical.github.io</u>国内镜像 MolAICal: <u>https://molaical.gitee.io</u>

2) UCSF Chimera: https://www.cgl.ucsf.edu/chimera

2.2 示例文件

1) All the necessary tutorial files are downloaded from: https://gitee.com/molaical/tutorials/tree/master/0000-docking

3.步骤

3.1 处理受体和配体

1. 打开与配体结合的 SARS-CoV-2 主蛋白酶文件 (PDB ID: 6Y2F) "6y2f.pdb": File→Open (见图 1)。

UCSF Chimera		1		- 0	×					
<u>File</u> <u>Select</u> <u>Actions</u>	<u>Presets</u> Tools	Favor	😡 Open File in (Chimera				×		
Open	Control-o		-Folder: E:\workdir\MolAICal\tutorial\tutorial\0000-docking							
Fetch by ID Restore Session Save Session	Control-s		itorial\	000-duckstart\ 000-docking\ 001-AIGrow\ 002-AIVS\ 003-VS\		ligand.pdb				
Save Image	in	es	opic\ ument\	004-MMGBSA\ 005-radiiCal\ 006-QSAR\						
Save PDB Save Mol2 Export Scene Publish			himera\ Example\ V2.full.pdf ymands.docx	007-PMF\ 008-vinardoScore\ 009-SA_Ro5_Pains\ 010-pkdEnergy\ 011-similaritySearch\						
Close Session Quit	Control-q		l Int		nmands2.docx	013-fragmentSplit\ LICENSE				
	development a not be fully fu	nd may rectional ne								
Add Tool Icon Active Dialogs None	Named Sel	lection	✓ File name: 6y2f.p File type: all (gui)	db <mark>l</mark> iess type) —				• •		
Show Help	Name current	selection				C Keep di	alog up afte Close He	elp		

图 1

2. 准备 Mpro 受体并将其保存成名为"protein.pdb"的文件。详细过程如图 2 所示。

图 2

3. 由于上述步骤已经删除配体,因此,需要关闭 UCSF Chimera 并按照上述步骤重新载入 文件 "6y2f.pdb" (**或者**点击 UCSF Chimera 上的 "File→Close Session"关闭上面操作步骤 的窗口,再重新加载文件"6y2f.pdb 即可)。现在准备配体并将其保存成名为 "ligand.pdb" 的文件。详细过程如图 3 所示。

3.2 将受体和配体转换为 PQBQT 格式

1. 使用 cd 命令切换到 protein.pdb 所在的文件夹,并使用以下命令获取受体的 PDBQT 格式:

#> MolAICal-xxx\molaical.exe -dock receptor -i protein.pdb

注意: MolAICal-xxx 是您下载的 MolAICal 版本的目录。 它将生成名为 "protein.pdbqt" 的文件,该文件具有与"protein.pdb"相同的前缀名称。

2. 使用以下命令获取配体的 PDBQT 格式:

#> MolAICal-xxx\molaical.exe -dock ligand -i ligand.pdb

它将生成名为"ligand.pdbqt"的文件,该文件具有与"ligand.pdb"相同的前缀名称。

注意: 配体必须包含完整的结构,如果配体缺氢原子,MolAICal将可能不会生成对应配体的 PDBQT 文件,用户可以使用 UCSF Chimera 进行加氢,或使用 MolAICal 中的命令,如下(用户需要把 1.mol2 文件替换成自己的文件名): #> molaical.exe -tool format -i E:/1.mol2 -o E:/1.pdbgt

3.3 获取对接盒的中心和长度

 依次打开 protein.pdb 和 ligand.pdb。 然后打开 Chimera 的"命令行": Favorites→Command Line (见图 4)。

2. 确定配体的开放序列。如果蛋白质首先打开,它将对应于"Active models 0"。 第二个打 开对应于"Active models 1",依此类推(见图 5)。 在这里,配体是第二个打开的("Active models 1")。将以下命令放入命令行(见图 5): define centroid mass false #1

并按 "Enter" 键。然后, 依次点击图 5 中的序号。它将显示配体的几何中心坐标 (x, y, z) 为 (10.879, -0.251, 20.754)。

😡 UCSF Chimera	– 🗆 X				
File Select Actions Presets Tools Favorites Help	Structure Measurements				
	Distances Angles/Torsions Ad	ust Torsions Axes/Planes/Centro	ids		
	Define axes		Define plane		Define centro
	Name ID Shown Len	gth Radius			
	centroid 🔲 c1 🗹	2.0			
	2. selected			if not show centroid click it.	, try to
		3. All selected			
	Choosing in table	✓ selects object		✓ selects	atoms
		4. click	Delete Rename Report distance to select align chosen axis or plane	e datoms e normal along X	
1. put command 🖤	Distance from 43 atoms to centr	oid name, ID, center: centroid: ci	10.879, -0.251, 20.75	54) min: 1.1 (#1 O6K 502.A O37), r	mean: 4.8, max:
Command: define centroid mass false #1			The second se		
Active models: V 0 V 1	O All Next Previous				
	 图	5			

3. 通过 UCSF Chimera 确定框大小和中心。

打开盒子工具: Tools→Surface/Binding Analysis→Autodock Vina **选择盒子大小:** 选择正确的受体(此处命名为"protein.pdb")和配体(此处命名为 "ligand.pdb")(参见图 6)。将上述中心坐标"10.879, -0.251, 20.754"填入中心框内 (见图 6),用户可以尝试大小,直到找出合适的尺寸。

注意:用户可以勾选 "Resize search volume using button 1, 2 or 3"。按钮 1、2 或 3 表示鼠标 左键、中键或右键单击。如果用户选择此功能,他们可以通过鼠标调整框大小。如果你对 它感兴趣,你可以试试这个功能。

4.假设配置文件名为"conf.txt",最终的配置文件可以写成:

```
out = all.pdbqt
cpu = 4
receptor = protein.pdbqt
center_x = 10.879
center_y = -0.251
center_z = 20.754
size_x = 20
size_y = 20
size_z = 20
num_modes = 3
```

其中 "out"是输出文件名。"cpu"是使用 CPU 的数量。"receptor"代表受体名称。 "num_modes"是生成对接构象的数量。如果"num_modes"为 3, 它将生成 3 个配体的对接结构。

3.4 MolAICal 的分子对接

现在 MolAICal 软包中的 MolAICalD 用于受体与配体的分子对接:
 #> MolAICal-xxx\molaicald --config conf.txt --ligand ligand.pdbqt

注意: MolAICal-xxx 是您下载的 MolAICal 版本的目录。

在某些情况下, 配体分子有很多旋转键, 这样就需要多次试验才可以得到较好的对接结果, 可以通过多次运行 MolAICal 找出合适的 random seed 来得到较好的对接结果, 这个 random seed 可以进一步用来这个靶点的分子对接或虚拟筛选(见图 7)。

图 7

例如,本教程中,用户可以用筛选出的 random seed: 555767984 来重复本教程。请输入下面的命令:

#> MolAICal-xxx\molaicald --config conf.txt --ligand ligand.pdbqt --seed 555767984

2. 将结果拆分为单个分子

#> MolAICal-xxx\molaical.exe -tool pdbqt -i all.pdbqt -o ./

单个分子被命名为 1.pdbqt、2.pdbqt 或 3.pdbqt 等。"1.pdbqt"包含结合亲和力最好的对接构象,以此类推。

用户可以直接通过 Pymol 软件查看 1.pdbqt、2.pdbqt 或 3.pdbqt。在这里, UCSF Chimera 用于检查结果。它需要首先通过 MolAICal 使用以下命令将"pdbqt"转化为"pdb"格式:

1) 加氢(选项)

#> MolAICal-xxx\molaical.exe -dock addh -i 1.pdbqt

2) 将"pdbqt"更改为"pdb"格式

#> MolAICal-xxx\molaical.exe -dock pdbqt2pdb -i 1.pdbqt

用户可以在本教程中对 2.pdbqt 和 3.pdbqt 使用相同的方式。现在,打开 UCSF Chimera 并加载 protein.pdb、1.pdb、2.pdb 和 3.pdb:

3) 用户可以通过 Favorites→Model Panel 在所有分子加载时选择显示或隐藏分子(见图 8)

注意:如果用户想分析蛋白质和对接配体之间的相互作用,用户可以选择在 protein.pdb 上 添加氢。

结果显示"1.pdb"有部分结构跟原始配体有叠合,而"3.pdb"与原始配体有相似的重叠部分。 这个体系做过分子动力学模拟(见教程 MM/GBSA: https://molaical.gitee.io/tutorial.html)。 MM/GBSA 教程的结果显示原始配体 N3 的 Andricioaei 熵值是-84.70646297459386 (kcal/mol)。这表明原始配体 N3 在 SARS-CoV-2 Mpro 的口袋中是不稳定的。

3.5 分析: 图像化展示氢键相互作用

这部分是选择性学习的。假如用户将分子对接完成之后,想分析受体和药物之间的氢键相互 作用,可以参考这个教程。

1) 假设文件"protein.pdb"和"1.pdb"已经加氢。在 UCSF Chimera 的同一个窗口中打开 "protein.pdb"和"1.pdb", 然后打开"Tools→Surface/Binding Analysis→FindHBond" (见图 9)。 按照图 9 的操作,可能会显示配体与部分受体残基的部分相互作用。(**注意:**点开 Tools→Surface/Binding Analysis, 会显示很多功能,用户可以选择自己想要的功能进行尝试, 本部分仅演示受体与配体的氢键相互作用。)

2) 为了显示配体和受体所有残基的相互作用,这需要生成有关氢键相互作用的详细信息文件,按照图 10 进行操作,将会生成一个名为"hbond.info"的文件,它包含了配体和所有受体 残基的氢键相互作用:

#0 SER 144.A OG	#1 O6K 502.A O48	no hydrogen	2.817	N/A
#0 CYS 145.A SG	#1 O6K 502.A O48	no hydrogen	3.160	N/A
#0 GLU 166.A N	#1 O6K 502.A O37	no hydrogen	2.933	N/A

图 10

3) 选择在文件"hbond.info"中的受体残基(本教程它们是 SER144, CYS145 和 GLU166), 并 按照图 11 进行操作, 最终就会生成配体与受体残基的氢键作用图。

技巧

如果用户想要生成比较漂亮的图片,可以按照图 12 的操作,本教程中最终氢键相互作用的 分析图片被命名为 "displayResult.png",当然用户可以根据具体需求选择合适的显示模式, 比如可以选择 hydrophobicity surface 模式。

注意: 在分析氢键相互作用前, 应该先选好想要的显示模式, 因为每次切换显示模式, 残基的 stick 模式就会消失。

图 12

参考文献

- [1] Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. bioRxiv. 2020.
- [2] Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020. doi: 10.1126/science.abb3405. PubMed PMID: 32198291