使用 MolAICal 计算纳米管和蛋白质孔道半 径的教程

作者: Qifeng Bai (update 2024-07-20)

更多教程(含英文教程)请见如下: MolAICal官方主页: https://molaical.github.io MolAICal官方主页中国镜像: https://molaical.gitlab.io MolAICal中文博客: https://molaical.gitlab.io/cntutorial.html

1. 简介

本教程介绍使用 MolAICal 计算纳米管和蛋白质半径的方法。共分为三个部分:纳米管半径 计算,蛋白质孔道半径计算和肽通道半径的计算。最后一个教程是肽通道半径的测量,如果 你熟悉 VMD 和 NAMD,可以使用由 CHARMM 力场产生的 PDB 和 PSF 文件来测量肽通 道的半径,当然也可以只使用肽段的 PDB 文件进行肽通道半径的测量。

2.工具

2.1. 所需软件下载地址

MolAICal: <u>https://molaical.github.io</u> 或 <u>https://molaical.gitlab.io</u>
 VMD: <u>https://www.ks.uiuc.edu/Research/vmd</u>

2.2. 操作示例文件

所有用到的操作教程文件均可在下面的网站下载: <u>https://gitee.com/molaical/tutorials/tree/master/005-radiiCal</u>

3. 操作流程

3.1. 纳米管半径计算

1) 在 VMD 软件中构建纳米管: Extensions→Modeling→Nanotube Builder (如图 1)。

File Molecule Graphics Display Mouse Extensions Help ID % Carbon Nanostructure Build Analysis I Analysis I 4 Help Help Add Ions Add Ions Material: C-C Simulation Add Solvation Box Length of bond (nm): 0.1418 Tk Console Owser VB Bonds Angles Dihedrals Impropers VMD Preferences Nanotube Building Options: 3d Fix Chirality Errors Fix Chirality Errors Nanotube chiral index n: 5 Fix Cis Peptide Bon Force Field Toolkit Nanotube length (nm): 5 MDFF Membrane Builder Generate Nanotube MDFF Membrane Builder MDFF Merge Structures Merge Structures		VMD Main			x			
Analysis Data Add Ions Add Ions Add Solvation Box Automatic PSF Built CG Builder Usualization Tk Console VMD Preferences Owser Fix Chirality Errors Nanotube chiral index m: Core Field Toolkit Inorganic Builder MDFF Graphene Sheet Building Options: Edge length along x (nm): S	Fi	le Molecule Graphics Disp	olay Mouse	Extensions Hel	р			
4 Help Topology Building Options: Modeling Material: C-C Length of bond (nm): 0.1418 Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): Image: Solution of Dond (nm): <	ID	76 Carbon Nanostructure Build		Analysis				
Topology Building Options: Simulation Add Solvation Box Material: C-C Visualization Add Solvation Box Length of bond (nm): 0.1418 Tk Console CG Builder Image: Bonds Ima	4		Help	Modeling	Add lons			
Material: C-C Visualization Automatic PSF Buil Length of bond (nm): 0.1418 Tk Console CG Builder I I Bonds I Angles I Dihedrals I Impropers VMD Preferences Dowser Nanotube Building Options: ad Fix Chirality Errors Nanotube chiral index n: 5 Fix Cis Peptide Bon Nanotube length (nm): 10 Force Field Toolkit Generate Nanotube 5 MDFF Graphene Sheet Building Options: 5 Membrane Builder Edge length along x (nm): 5 Merge Structures		Topology Building Option	IS:	Simulation	Add Solvation Box			
Length of bond (nm): 0.1418		Material:	C-C	Visualization	Automatic PSF Builder			
Image: Second		Length of bond (nm):	0.1418	Tk Console	CG Builder			
Nanotube Building Options: 3d Fix Chirality Errors Nanotube chiral index n: 5 5 Nanotube chiral index m: 10 Force Field Toolkit Nanotube length (nm): 5 MDFF Generate Nanotube MDFF Membrane Builder Graphene Sheet Building Options: 5 Merge Structures Edge length along x (nm): 5 Merge Structures	K.	🔽 Bonds 🔽 Angles 🔽 Dihedrals	✓ Impropers	VMD Preference	s Dowser			
Nanotube chiral index n: 5 Fix Cis Peptide Bon Nanotube chiral index m: 10 Force Field Toolkit Nanotube length (nm): 5 Inorganic Builder Generate Nanotube MDFF MDFF Graphene Sheet Building Options: Membrane Builder Edge length along x (nm): 5 Merge Structures		Nanotube Building Option	ns:	be	Fix Chirality Errors			
Nanotube chiral index m: 10 Force Field Toolkit Nanotube length (nm): 5 Inorganic Builder Generate Nanotube MDFF Graphene Sheet Building Options: Membrane Builder Edge length along x (nm): 5 Edge length along x (nm): 5 Manage Structures Manage Structures	_	Nanotube chiral index n:	5		Fix Cis Peptide Bonds			
Nanotube length (nm): 5 Inorganic Builder Generate Nanotube MDFF Graphene Sheet Building Options: Membrane Builder Edge length along x (nm): 5 Merge Structures		Nanotube chiral index m: (2)	10		Force Field Toolkit			
Generate Nanotube MDFF Graphene Sheet Building Options: Membrane Builder Edge length along x (nm): 5 Fider length along x (nm): 40		Nanotube length (nm):	5		Inorganic Builder			
Graphene Sheet Building Options: Membrane Builder Edge length along x (nm): 5 Merge Structures		Generate Nanotube			MDFF			
Edge length along x (nm): 5 Merge Structures		Graphene Sheet Building Op	otions:	1	Membrane Builder			
Educate langth slage (and)		Edge length along x (nm):	5		Merge Structures			
Edge length along y (nm): 10 Molefacture		Edge length along y (nm):	10	-	Molefacture			
Number of layers: 1 Mutate Residue		Number of layers:	1	-	Mutate Residue			
Graphene edge type: C Armchair C Zigzag Nanotube Builder		Graphene edge type: O Armchair	Zigzag		Nanotube Builder			
Generate Sheet(s) TorsionPlot		Generate Sheet(s)		1	TorsionPlot			

图 1. 构建纳米管

2) 使用类似图 1 的方法打开 VMD Tk Console: Extensions→Tk Console。在 Tk Console 中使 用 cd 命令切换到含有文件"nanotube.pdb"和"parameter.dat"的目录,例如: #> cd d:/005-radiiCal/nanotube

3) 使用如下命令在 Tk Console 中保存生成的纳米管文件,并命名为"nanotube.pdb"

#> set all [atomselect top all]

#> \$all writepdb nanotube.pdb

4) 选择已构建纳米管内的任意点。你可以在纳米管孔道内表面选择 2 个不同的原子, 然后 将这两个原子的连线中心作为"cpoint"(**见本文件附录 1 中的示例**)。在本教程中, 选择的点 坐标为-0.2015 0.4185 30.147。打开"005-radiiCal\nanotube"文件夹中的"parameter.dat", 将以 上所选点坐标添加到"cpoint"。 然后按下文所示修改"vector"参数:

cpoint -0.2015 0.4185 30.147 vector 0.00 0.00 1.00

"0.00 0.00 1.00"表示沿着 Z 轴方向的半径测量。"0.00 1.00 0.00"表示沿着 Y 轴方向的半径 测量。"1.00 0.00 0.00"表示沿着 X 轴方向的半径测量。通道可大致沿任意轴方向放置,即 和 vector 的方向大致一致。

5) 在 Windows DOS 或 Linux console 中运行如下命令计算半径: #> molaical.exe -channel radii -cpp parameter.dat

命令运行会生成"channel_radii.dat", "dot.vmd_plot"和"surf.vmd_plot"文件。"dot.vmd_plot" 和"surf.vmd_plot"可通过 VMD 软件展示通道表层。类似图 1 的方式打开 VMD Tk Console: Extensions→Tk Console。然后运行以下命令:

#> source dot.vmd_plot

本教程省略了纳米管卡通图的做法,你可以根据自己的偏好自行设置。你将看到如图2所示的通道点曲面:

图 2. 纳米管通道表面

文件 "channel_radii.dat" 包含了反应坐标和半径值。文件"channel_radii.dat"中的第一列是反 应坐标, 第二列是半径值。可以使用 OriginLab, Microsoft Excel 等工具将其绘制成图。绘制 结果如图 3 所示(**见本文件附录 2 中的作图示例**):

3.2. 蛋白孔道半径计算 转至教程所在目录下: #> cd 005-radiiCal/KcsA

在蛋白通道中选择任意点(**见本文件附录 1 中的示例**), 然后在参数文件"parameter.dat"中, 将参数"cpoint"设置成为所选点的坐标。按照下文所示设置参数"cpoint"和 "vector":

cpoint 0.001 0.006 1.927

vector 0.00 0.00 1.00

"0.00 0.00 1.00"表示沿着 Z 轴方向的半径测量。"0.00 1.00 0.00"表示沿着 Y 轴方向的半径 测量。"1.00 0.00 0.00"表示沿着 X 轴方向的半径测量。通道可大致沿任意轴方向放置,即 和 vector 的方向大致一致。

1) 在 Windows DOS 或 Linux console 中运行如下命令计算半径: #> molaical.exe -channel radii -cpp parameter.dat

2)本运算也会生成"channel_radii.dat", "dot.vmd_plot" 和 "surf.vmd_plot"文件。类似图 1 的 方式打开 VMD Tk Console: Extensions→Tk Console。然后运行以下命令:
#> mol load pdb KcsA.pdb
#> source dot.vmd_plot

本教程省略了蛋白卡通图的做法,你可以根据自己的偏好自行设置。你将看到图4所示点曲面:

图 4. 蛋白通道的点曲面

文件 "channel_radii.dat" 包含了反应坐标和半径值。文件"channel_radii.dat"中的第一列是反 应坐标, 第二列是半径值。可以使用 OriginLab, Microsoft Excel 等工具将其绘制成图。半径 绘制如图 5 所示 (**见本文件附录 2 中的作图示例**):

注意事项: 文件"parameter.dat"中的参数"conpar"是一个控制参数,参数"conpar"的默认值是 0.15,其数值的增加可以提升随机测量的概率。在这种情况下,有可能出现一些奇怪的测量 路线。如果你的蛋白孔道比较规则且大致沿着 X,Y,Z 轴的某一个方向,你可以减少参数 "conpar"的数值,比如设置成 0.04,但是参数"conpar"不能设置成 0,这样你就能得到较为规 整的测量通道。

3.3. 半径计算的高级教程

本部分示例利用由 CHARMM 力场产生的 PDB 和 PSF 文件计算多肽孔道半径。转至教程 所在目录:

#> cd 005-radiiCal/GramicidinA

选择多肽孔道中的任意点 (**见本文件附录 1 中的示例**)。将参数"cpoint"设置为所选任意点的 坐标。按照下文所示设置参数"pdbpath", "psfpath", "cpoint" 和 "vector":

 pdbpath
 1JNO.pdb

 psfpath
 1JNO.psf

 cpoint
 0.1625 -0.629 -1.838

 vector
 0.00 0.00 1.00

"0.00 0.00 1.00" 表示沿着 Z 轴方向的半径测量。"0.00 1.00 0.00" 表示沿着 Y 轴方向的半径 测量。"1.00 0.00 0.00" 表示沿着 X 轴方向的半径测量。通道应大致沿任意轴方向放置,即和 vector 的方向大致一致。

1) 在 Windows DOS 或 Linux console 中运行如下命令计算半径:

#> molaical.exe -channel radii -cpp parameter.dat -fc charmm

2)本次运算也会生成 "channel_radii.dat", "dot.vmd_plot" 和 "surf.vmd_plot"文件。类似图 1 的方式打开 VMD Tk Console: Extensions→Tk Console。运行以下命令:
#> mol load pdb 1JNO.pdb
#> source surf.vmd_plot

本教程省略了多肽卡通图的做法,你可以根据自己的偏好自行设置。你将看到图6所示多肽 通道 (如图6所示):

图 6. 多肽通道

文件 "channel_radii.dat" 包含了反应坐标和半径值。文件"channel_radii.dat"中的第一列是反 应坐标, 第二列是半径值。可以使用 OriginLab, Microsoft Excel 等工具将其绘制成图。半径 绘制如图 7 所示 (**见本文件附录 2 中的作图示例**):

附录1选择孔道中的任意点

如何获取通道中的坐标? 以"**3.2. 蛋白孔道半径计算**"为例: #> cd 005-radiiCal/KcsA

1. 打开 vmd 并加载"KcsA.pdb", 如图 8 所示

Molecule File Browser	🖬 VMD Main — 🗆 🗙
Load files for: 1: KcsA.pdb	File Molecule Graphics Display Mouse Extensions Help
Filename: als_materials/005-radiiCal/KcsA/KcsA.pdb Browse	New Molecule 1 Atoms Frames Vol
Determine file type: PDB Load Frames: Volumetric Datasets	Load Data Into Molecule 6284 1 0 Save Coordinates 6284 1 0 Load Visualization State Save Visualization State
First: Last: Stride: 0 -1 1	Log Tcl Commands to Console Log Tcl Commands to File Turn Off Logging Render Quit

图 8

2. 将蛋白质显示成卡通模式(如图9所示),**这只是为了更好地观察,如果用户可以轻松操 作蛋白质,则可以省略此步骤。**

■ Graphical Representations – □	<							
Selected Molecule	II V	MD Main				_		×
1: KcsA.pdb	File	Molecule	Graphics	Display	Mouse	Extension	s He	elp
Create Rep Delete Rep	ID	TADFI	Represent	ations	Atoms	Fran	nes	Vol
Style Color Selection	1	TADF	K Materials		6284	1		0
NewCartoon Name all			Labels		`1			
			Tools					
					1			
Polosted Atoms	• •	zoom 🗖	Loop 💌	step 🖣 1	▶ spee	d		
all								
Draw at the Contractions of Tracing to and Designation		VMD	1.9.3 OpenGL I	Display		_		\times
Coloring Method Material								
Name Opaque								
Drawing Method					St.			
NewCartoon 🔽 Cefault			S	Che Che	$\mathcal{F}^{(2)}$			
Spline Style Catmull-Rom	- I		\sim	100				
Aspect Ratio 4.10			2	$\sqrt{35}$	2.5	5		
Thickness 0.30			(650		3		
Resolution (((10))				19. A	23			
	1		ž 🔺	-*	3/2	<u>_</u>		
					79 J			
		图 9						

3. 按下键盘上的字符"r", 它将在 VMD 中旋转对象; 按键盘上的数字"1", 在 VMD 中点击 一个原子, 它将选中这个原子; 按键盘上的数字"2", 单击原子 1, 然后单击原子 2, 它将生

成一条连接线。在此步骤中,按数字"2",然后在 VMD 中依次单击通道内的两个原子,如 图 10 所示。显然,图 10 中两个原子的连接线大部分都在通道内。

图 10

4. 用户可以通过"Graphics→Labels→Atoms→XYZ"获得所选原子的坐标(见图 11)

💷 VMD Main		_		×	Labels		-	
File Molecule Graphics Display	Mouse Ex	tensions	Help		Atoms 🔻	Show	Hide	Delete
ID T A D F N 2 T A D F K Materials 1001s	Atoms 6284 1	Frames 1	s Vol 0		THR75:CA GLY77:CA Picked Atom Gra	2 aph Propertic	3. pasto s Global Pr	e it operties
	_1			- •	Molecule: 2:	KcsA.pdf		
✓ ◀ zoom □ Loop ▼ step ◀	1 ▶ speed	_			XY <mark>Z: -</mark>	-3.361 -2.68	1 9.662	
					ResName: TH	HR	Chain: A	
					ResID: 75	5 Se	gName: A	
					Name: CA	A	Index: 809	
					Type: CA	A	Value: 0.	.000
					-			

图 11

这将获得2个孔道内的坐标:

Coordinates of atom 1:	-3.361	-2.681	9.662
Coordinates of atom 2:	3.454	2.097	15.257

显然,图 10 中两个原子的连接线大部分都在通道内。因此,这里选择:原子 1 和 2 之间的 中心点 = (Coordinates of atom 1 + Coordinates of atom 2) /2 = {[-3.361, -2.681, 9.662] + [3.454, 2.097, 15.257]} / 2 = **0.0465, -0.292, 12.4595 → 这是一个选择通道或孔道中任意点的实例**。 此外, 用户可以使用 VMD Tkconsole 按以下命令计算原子 1 和 2 之间的中心点, 然后按键 盘上的"Enter"键:

#> vecscale 0.5 [vecadd { -3.361 -2.681 9.662 } { 3.454 2.097 15.257 }]

74	/MD TkC	onsole												_		×
<u>F</u> ile	<u>C</u> onsole	<u>E</u> dit	<u>I</u> nterp	<u>P</u> refs	<u>H</u> istory	<u>H</u> elp										
>Ma 0.0 >Ma	in< (46499 in< (VMD) 9999 VMD)	61 9 99999 62 9	vec 9986	scale -0.29	0.5	[vecadd { 0000000000	-3.361)4 12.45	-2.681 95	9.662	} {	3.454	2.097	15.25	7 }]	4

附录2 在 MolAICal 中的半径绘图

为了在 MolAICal 中作图,转到虚拟环境:

在 Windows 系统中,打开 DOS 或 Powershell,输入以下命令并按"回车键": #> D:\MolAICal-win64\mtools\py\Scripts\activate.bat

在 Linux 系统中, 打开 Linux 终端, 输入以下命令并按"回车键": #> source /home/feng/tutorial/MolAICal-linux64/mtools/py/bin/activate

注意:请将"D:\MolAICal-win64"或"/home/feng/tutorial/MolAICal-linux64"替换为您的真 实 MolAICal 路径。

如果您进入了虚拟环境,您将看到类似于以下的截图:

```
(py) feng@feng-System-Product-Name:~/tutorial$ ls *dat
deal_rec_list.dat lig_list.dat lig_list_mol2.dat rec_list.dat
(py) feng@feng-System-Product-Name:~/tutorial$
```

转入到文件夹 "005-radiiCal/KcsA"中:

#> cd 005-radiiCal/KcsA

然后, 输入以下命令**绘制并保存**孔道半径图 (见图 12):

#> python plot_radii.py

注意:如果用户熟悉 Matplotlib (https://matplotlib.org),可以根据具体的作图要求修改文件 "plot radii.py".

图 12