使用 MolAICal 进行药物的 QSAR 计算

作者: Qifeng Bai (update 2021-10-16)

更多教程(含英文教程)请见如下: MolAICal 官方主页: https://molaical.github.io MolAICal 官方主页中国镜像: https://molaical.gitee.io MolAICal 中文博客: https://molaical.gitee.io/cntutorial.html

1. 简介

药物的定量构象关系(QSAR)包含线性回归和分类,在本教程中选用 STAT3 蛋白靶点的药物 分子作为研究对象; STAT3 是治疗癌症的一个重要蛋白靶点,研究 STAT3 药物的属性,有 助于设计合理的抗癌药物。

2. 工具

2.1. 所需软件

1) MolAICal: <u>https://molaical.github.io</u> 国内镜像 MolAICal: <u>https://molaical.gitee.io</u>

2) Notepad++: <u>https://notepad-plus-plus.org</u> **说明:** 假如登陆不了 Notepad++的官方网址,可以使用百度直接搜索下载, Notepad++是一款 免费的工具。

2.2. 操作所需的示例文件

1) 本教程所需的教程文件可以从以下网址下载: https://gitee.com/molaical/tutorials/tree/master/006-QSAR

3. 步骤

MolAICal 提供了 2 个免费的分子描述符计算模块: PaDEL-Descriptor [1] 和 Mordred [2]。 PaDEL-Descriptor 的许可是自由免费的; 而 Mordred (Copyright (c) 2015-2017, Hirotomo Moriwaki) 使用 BSD 3-Clause "New" 或 "Revised" 许可 (见: <u>https://github.com/mordreddescriptor/mordred/blob/develop/LICENSE</u>)。

3.1. 计算分子描述符

切换到 006-QSAR/mordred

选择 1: 使用 MolAICal 调用 Mordred 模块计算分子描述符,计算命令如下: #> molaical.exe -tool mordred -i example.smi

说明: "example.smi" 是包含分子 SMILES 字符串的文件。

运行命令之后, 会生成两个文件, 分别是"with3D-descriptors.csv"和 "without3D-descriptors.csv"。其中"with3D-descriptors.csv"包含 2D 和 3D 的分子描述符, 而"without3D-descriptors.csv"包含 2D 分子描述符但不包括 3D 分子描述符。

切换到 006-QSAR/PaDEL

选项 2: 使用 MolAICal 调用 PaDEL 模块计算分子描述符,计算命令如下: #> molaical.exe -tool padel -f sdf -i sdf

这个命令将生成 2 个文件, 分别是"2DDescriptor_mdl.csv"和 "3DDescriptor_mdl.csv"。其中 "2DDescriptor mdl.csv"包含 2D 分子描述符, 而"3DDescriptor mdl.csv"包含 3D 分子描述符。

警告: "sdf" 是一个文件夹,里面放着 SDF 格式的文件。对于 PaDEL 分子描述的计算,必须在本地计算机上进行计算,目前远程机器调用不了 X11 window server,使用远程机器算 PaDEL 分子描述会报错。除此之外,PaDEL 计算分子描述符的时候,特别耗费内存,用户可以选取少量的分子(如 50 个分子)进行描述符的计算,然后在合并结果。更多详细命令的解释,请参考 MolAICal 的手册。

3.2. 准备 QSAR 计算的文件

在本教程,使用"3DDescriptor_mdl.csv"文件进行计算。 1)使用 Excel 打开"3DDescriptor_mdl.csv",并且像图 1 一样设置参数:

D2	2		: 	×	$\int_{ar}^{f_x} f_x$	ande -	numbe	er of mo	lecular o	descripto	ors		
	j j	τιε	B			anus	E	F	G	н	1	J	
1	mordree	d	data		/								
2		9		2	1826	0	0						
3	on rep	ore	sent	s a	ppointe	d train a	nd valid	ation se	ts, "off"	means l	.oo, etc.		
4		1		2	3	4	6	7	8	→ tra	in set		
5		5		9	🔶 va	lidation	set						
6	No.		MollD		pKd	ABC	ABCGG	nAcid	nBase	SpAbs_A	SpMax_A	SpDiam_A	Sp
7		1	ligand	1	8	26.39831	19.88094	0	1	44.04578	2.428947	4.852413	44
8		2	ligand	2	7.12	19.74662	14.68046	0	1	33.95013	2.402639	4.737638	33
9		3	ligand	3	8.43	27.90811	21.13684	0	0	44.90471	2.76766	5.293696	44
10		4	ligand	4	7.96	18.53925	15.11402	0	0	29.79685	2.543585	4.891807	- 29
11		5	ligand	5	8.46	18.18258	15.71791	0	0	30.93321	2.463499	4.804519	30
12		6	ligand	6	10.44	29.15609	21.88897	0	1	47.71541	2.749242	5.270881	4
13		7	ligand	7	8.01	32.95689	23.00189	0	2	54.32907	2.436897	4.873793	54
14		8	ligand	8	7.8	29.0862	20.81082	0	1	46.2906	2.405496	4.810985	4
15		9	ligand	9	8.96	17.7632	15.19476	0	0	29.64829	2.455328	4.875213	29
16 17	🔺 a	do	d and	l m	odify	a	dd mole	cular pK	d				

图 1. 设置 QSAR 的参数。在本次教程中"title"和 "number of molecular descriptor"分别是 "PaDel data"和 431。图 1 是故意设置让用户知道这一块需要修改。 你必须在"3DDescriptor_mdl.csv"中严格按照格式设置参数。第一行可以使用默认标题或者也 可以使用你设置的任意标题。在第二行的第一个数字是用于 QSAR 计算的配体分子数, 第 二行的第三个数字代表分子描述符的数量。第二行的其余数字可以使用默认数字或者其它任 意数字, 这对 QSAR 的计算没有影响。在第三行上的字符"on"代表指定了训练集和验证集, 第四行是训练集的序号, 第五行是验证集的序号, 此序号对应文件"QSARMolDes.txt"底下配 体的序号(如图 1 所示)。如果第三行是"off",则使用留一验证法(LOO)进行 QSAR 的计 算, 在这种情况下, 第四、五行的数字可以省略, MolAICal 自动使用留一法指定训练集与 验证集进行运算(请参考示例文件: "QSARMolDes_LOO.txt")。除此之外, 序号"No."要加 到第一列, 序号应该从 1 开始而不是 0; "MolID"部分是分子的名称, 用户可以根据具体情 况更改分子的名称, 分子名称不能有空格; 实验值如 pKd 等应该加到第三列中(如图 1 所 示)。

警告: PaDEL-Descriptor 和 Mordred 可能会在分子描述计算过程中生成字符而不是数字,在 这种情况下,需要删掉这些包括字符的分子描述符,不然会报无法识别的错误。

2) 通过 Excel 将"3DDescriptor_mdl.csv"保存成 "3DDescriptor_mdl.txt"。但是这个文件的格式不是 UTF-8 的格式。因此,需要将 "3DDescriptor_mdl.txt"转化成 UTF-8 的格式,Notepad++可以进行格式的转化。通过 Notepad++打开"3DDescriptor_mdl.txt"。选择工具栏中的 Encoding→UTF-8,最后保存成 "QSARMolDes.txt"(见图 2)。

图 2. 将文件保存成 UTF-8 的格式

注意:有时候, Excel 并不能把文件保存成 UTF-8 的格式。所以,使用 Notepad++进行 UTF-8 的格式转化。假如用户的 Excel 可以将文件转化成 UTF-8 的格式,则可以不使用 Notepad++。

3.3. QSAR 计算

运行如下命令: #> molaical.exe -qsar GA -i QSARMolDes.txt #> molaical.exe -qsar GA -i QSARMolDes LOO.txt

假如你想了解更多的 QSAR 参数,请参考 MolAICal 的说明书。本教程仅仅包括 9 个配体。 当Q2的运算值已经满足你的研究目的,你可以通过"Ctrl+C"快捷键终止MolAICal的运行。 最后的结果保存在"QSAROutFile.dat"文件中, 打开"QSAROutFile.dat", 其具体运算结果的信 息如下:

```
****** The 1th model ******
The Q^2-LOO is: 0.8542
R^2 fitting is: 0.9473
R^2 adjusted is: 0.9210
RSS is: 0.4042
The formula is: y = 0.68376 + (1.12498) * HOp + (2.45137) * Mor26e + (0.79399) * ESpm06d
The standard errors of b0 to b3 corresponding to formula is: 1.83351, 2.17332, 0.25011, 0.23398
The standard error of the regression (sigma) is: 0.2595
The experiment values, predicted values, calculated values by LOO validation and residuals:
8.0
        8.1138
                    8.1743
                                -0.1138
7.12
         7.2904
                     7.4440
                                -0.1704
8.43
         8.5246
                     8.5705
                                 -0.0946
7.96
         7.7950
                     7.6441
                                 0.1650
8.46
         8.7477
                    8.8000
                                -0.2877
          10.5084
                       10.7288
10.44
                                    -0.0684
        7.8877
                    7.8584
                                 0.1223
8.01
        7.9168
                   8.3305
7.8
                                -0.1168
         8.5185
                    8.3828
8.96
                                 0.4415
9.24
         9.1171
                    9.0764
                                 0.1229
```

注意: 假如用户想解释分子描述符的物理化学意义等, 可以访问以下链接, 参考相关文档: https://gitee.com/molaical/documents/tree/master/manual/descriptors-instructions

参考文献:

Yap CW. PaDEL-descriptor: an open source software to calculate molecular descriptors and 1. fingerprints. J Comput Chem. 2011;32(7):1466-74.

2. Moriwaki H, Tian YS, Kawashita N, Takagi T. Mordred: a molecular descriptor calculator. J Cheminform. 2018;10(1):4.

或